Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance.

Identifieur interne : 004714 ( Main/Exploration ); précédent : 004713; suivant : 004715

Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance.

Auteurs : T L Osier [États-Unis] ; R L Lindroth

Source :

RBID : pubmed:11504029

Descripteurs français

English descriptors

Abstract

Genetic and environmental variability, and their interactions, influence phytochemical composition and, in turn, herbivore performance. We evaluated the independent and interactive effects of plant genotype, nutrient availability, and defoliation on the foliar chemistry of quaking aspen (Populus tremuloides) and consequences for performance of gypsy moths (Lymantria dispar). Saplings of four genotypes were grown under two conditions of nutrient availability and subjected to three levels of artificial defoliation. Concentrations of all secondary and primary metabolites evaluated responded to at least one or more of the experimental treatments. Of the secondary metabolites, phenolic glycosides were affected strongly by genotype, less so by nutrient availability, and not induced by defoliation. Condensed tannins were strongly dependent upon genotype, soil nutrient availability, and their interaction, and, in contrast to phenolic glycosides, were induced by artificial defoliation. Of the primary metabolites, foliar nitrogen was affected by genotype and soil nutrient availability. Starch concentrations were affected by genotype, nutrient availability, defoliation and interactions among these factors. Foliar water content responded to genotype, nutrient availability, and defoliation, and the effect of nutrient availability depended on genotype. Herbivore performance on these plants was strongly influenced by plant genotype and soil nutrient availability, but much less so by defoliation. Although several of the compound types (condensed tannins, starch, and water) responded to defoliation, quantitative variation in these compounds did not contribute to substantive changes in herbivore performance. Rather, the primary source of variation in insect performance was due to plant genotype (phenolic glycoside levels), while nutrient availability (foliar nitrogen levels) was of secondary importance. These results suggest that genetic variation in aspen plays a major role in determining patterns of insect performance, whereas environmental variation, such as was tested, here is of negligible importance.

DOI: 10.1023/a:1010352307301
PubMed: 11504029


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance.</title>
<author>
<name sortKey="Osier, T L" sort="Osier, T L" uniqKey="Osier T" first="T L" last="Osier">T L Osier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, USA. osier@entomology.wisc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison</wicri:regionArea>
<wicri:noRegion>University of Wisconsin-Madison</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, R L" sort="Lindroth, R L" uniqKey="Lindroth R" first="R L" last="Lindroth">R L Lindroth</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11504029</idno>
<idno type="pmid">11504029</idno>
<idno type="doi">10.1023/a:1010352307301</idno>
<idno type="wicri:Area/Main/Corpus">004744</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004744</idno>
<idno type="wicri:Area/Main/Curation">004744</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004744</idno>
<idno type="wicri:Area/Main/Exploration">004744</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance.</title>
<author>
<name sortKey="Osier, T L" sort="Osier, T L" uniqKey="Osier T" first="T L" last="Osier">T L Osier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, USA. osier@entomology.wisc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison</wicri:regionArea>
<wicri:noRegion>University of Wisconsin-Madison</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, R L" sort="Lindroth, R L" uniqKey="Lindroth R" first="R L" last="Lindroth">R L Lindroth</name>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="ISSN">0098-0331</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Moths (physiology)</term>
<term>Nutritional Status (MeSH)</term>
<term>Phenols (chemistry)</term>
<term>Plant Leaves (chemistry)</term>
<term>Population Dynamics (MeSH)</term>
<term>Salicaceae (chemistry)</term>
<term>Salicaceae (genetics)</term>
<term>Tannins (chemistry)</term>
<term>Trees (MeSH)</term>
<term>Water (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arbres (MeSH)</term>
<term>Dynamique des populations (MeSH)</term>
<term>Eau (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Génotype (MeSH)</term>
<term>Papillons de nuit (physiologie)</term>
<term>Phénols (composition chimique)</term>
<term>Salicaceae (composition chimique)</term>
<term>Salicaceae (génétique)</term>
<term>Tanins (composition chimique)</term>
<term>Variation génétique (MeSH)</term>
<term>État nutritionnel (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Phenols</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Phénols</term>
<term>Salicaceae</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Moths</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Nutritional Status</term>
<term>Population Dynamics</term>
<term>Trees</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Arbres</term>
<term>Dynamique des populations</term>
<term>Eau</term>
<term>Génotype</term>
<term>Variation génétique</term>
<term>État nutritionnel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genetic and environmental variability, and their interactions, influence phytochemical composition and, in turn, herbivore performance. We evaluated the independent and interactive effects of plant genotype, nutrient availability, and defoliation on the foliar chemistry of quaking aspen (Populus tremuloides) and consequences for performance of gypsy moths (Lymantria dispar). Saplings of four genotypes were grown under two conditions of nutrient availability and subjected to three levels of artificial defoliation. Concentrations of all secondary and primary metabolites evaluated responded to at least one or more of the experimental treatments. Of the secondary metabolites, phenolic glycosides were affected strongly by genotype, less so by nutrient availability, and not induced by defoliation. Condensed tannins were strongly dependent upon genotype, soil nutrient availability, and their interaction, and, in contrast to phenolic glycosides, were induced by artificial defoliation. Of the primary metabolites, foliar nitrogen was affected by genotype and soil nutrient availability. Starch concentrations were affected by genotype, nutrient availability, defoliation and interactions among these factors. Foliar water content responded to genotype, nutrient availability, and defoliation, and the effect of nutrient availability depended on genotype. Herbivore performance on these plants was strongly influenced by plant genotype and soil nutrient availability, but much less so by defoliation. Although several of the compound types (condensed tannins, starch, and water) responded to defoliation, quantitative variation in these compounds did not contribute to substantive changes in herbivore performance. Rather, the primary source of variation in insect performance was due to plant genotype (phenolic glycoside levels), while nutrient availability (foliar nitrogen levels) was of secondary importance. These results suggest that genetic variation in aspen plays a major role in determining patterns of insect performance, whereas environmental variation, such as was tested, here is of negligible importance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11504029</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>12</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0098-0331</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>27</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2001</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance.</ArticleTitle>
<Pagination>
<MedlinePgn>1289-313</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Genetic and environmental variability, and their interactions, influence phytochemical composition and, in turn, herbivore performance. We evaluated the independent and interactive effects of plant genotype, nutrient availability, and defoliation on the foliar chemistry of quaking aspen (Populus tremuloides) and consequences for performance of gypsy moths (Lymantria dispar). Saplings of four genotypes were grown under two conditions of nutrient availability and subjected to three levels of artificial defoliation. Concentrations of all secondary and primary metabolites evaluated responded to at least one or more of the experimental treatments. Of the secondary metabolites, phenolic glycosides were affected strongly by genotype, less so by nutrient availability, and not induced by defoliation. Condensed tannins were strongly dependent upon genotype, soil nutrient availability, and their interaction, and, in contrast to phenolic glycosides, were induced by artificial defoliation. Of the primary metabolites, foliar nitrogen was affected by genotype and soil nutrient availability. Starch concentrations were affected by genotype, nutrient availability, defoliation and interactions among these factors. Foliar water content responded to genotype, nutrient availability, and defoliation, and the effect of nutrient availability depended on genotype. Herbivore performance on these plants was strongly influenced by plant genotype and soil nutrient availability, but much less so by defoliation. Although several of the compound types (condensed tannins, starch, and water) responded to defoliation, quantitative variation in these compounds did not contribute to substantive changes in herbivore performance. Rather, the primary source of variation in insect performance was due to plant genotype (phenolic glycoside levels), while nutrient availability (foliar nitrogen levels) was of secondary importance. These results suggest that genetic variation in aspen plays a major role in determining patterns of insect performance, whereas environmental variation, such as was tested, here is of negligible importance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Osier</LastName>
<ForeName>T L</ForeName>
<Initials>TL</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, USA. osier@entomology.wisc.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>R L</ForeName>
<Initials>RL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009752" MajorTopicYN="N">Nutritional Status</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011157" MajorTopicYN="N">Population Dynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031308" MajorTopicYN="N">Salicaceae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11504029</ArticleId>
<ArticleId IdType="doi">10.1023/a:1010352307301</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 1988 Nov;77(3):302-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):2-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7816816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1990 Mar;5(3):91-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Aug;107(3):373-378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1996 Apr;22(4):765-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 Apr;86(2):202-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1985 Jun;66(3):456-457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1989 Sep;15(9):2335-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1998 Aug;116(1-2):170-176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Jul;103(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Aug;120(2):295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1992 Jul;18(7):985-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24254142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1988 Apr;75(3):367-370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Feb;105(3):388-396</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1980 Sep-Oct;28(5):947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7462522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 May;86(3):408-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1987 Oct;73(4):513-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Apr;101(4):467-471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1987 Jul;72 (4):510-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312511</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lindroth, R L" sort="Lindroth, R L" uniqKey="Lindroth R" first="R L" last="Lindroth">R L Lindroth</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Osier, T L" sort="Osier, T L" uniqKey="Osier T" first="T L" last="Osier">T L Osier</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004714 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004714 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11504029
   |texte=   Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11504029" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020